Development of a recyclability index for photovoltaic products

2nd stakeholder meeting

9 October 2024 10:30-12:30 & 14:00-16:00

www.pv-recyclability-index.eu

info@pv-recyclability-index.eu

Agenda

1	Welcome – 10:30	
2	Policy Background – European Commission 10:40 – 11:00	
3	Scientific Background of the study 11:00 – 11:30	
4	Scoring System Method – Parameters 11:30 – 12:30	
5	Scoring System Method – Priority Materials / Components 14:00 – 14:30	
6	Scoring System Method – Scoring, Weight and Aggregation 14:30 – 15:00	
7	Next steps of the study 15:00 – 15:30	
8	General Questions and Answers 15:30 – 15:55	
9	AOB, closure 16:00	

The team

Viegand Maagøe

Viegand Maagøe

ADItech

Housekeeping rules & practical information for Viegand Maagøe stakeholders

More than 110 registered for the meeting

- 1. Remain muted, unless speaking when invited by the chair
- 2. Only audio connection, no video
- 3. At each Q&A session, use chat when asking for the floor, stating name and organisation
- 4. Else please do not use chat difficult to monitor during the meeting
- 5. Concise question or intervention when given the floor
- 6. Written comments and inputs after the meeting are welcomed, deadline 1st Nov 2024
- 7. Slides and brief minutes will be published at the study web site after the meeting, at <u>https://www.pv-recyclability-index.eu/</u>
- 8. The meeting is being recorded for the purpose of the minutes. You gave consent when registering.

Agenda

 Policy Background - European Commission 10:40 – 11:00 Scientific Background of the study 11:00 – 11:30 Scoring System Method – Parameters 11:30 – 12:30 Scoring System Method – Priority Materials / Components 14:00 – 14:30 	
4 Scoring System Method – Parameters 11:30 – 12:30	
5 Scoring System Method – Priority Materials / Components 14:00 – 14:30	
6 Scoring System Method – Scoring, Weight and Aggregation 14:30 – 15:00	
7 Next steps of the study 15:00 – 15:30	
8 General Questions and Answers 15:30 – 15:55	
9 AOB, closure 16:00	

Policy Background

Requirements/labelling under preparation

PV modules

- •Durability(quantitative)
- Carbon footprint

•Repairability (information)

Recyclability (information)energy yield (information)

PV inverters

- •Efficiency (quantitative)
- Durability (quantitative)
- Smart readiness (compulsory feature)
- Repairability(compulsory feature)
- Recyclability (information)

Energy label •PV modules

Initial product scope

- Modules
- Inverters
- Systems

Market segments

- Residential
- Commercial
- Utility

Research / policy question: can more be made, to regulate the recyclability of PV modules?

A recyclability index for photovoltaic modules!

How to proceed for a recyclability index?

A 'CONCEPTUAL SWITCH'

FROM:

'Disassembly': means a process whereby a product is separated into its parts and/or components in such a way that it could subsequently be reassembled and made operational (→ REPARABILITY SCORE) [Definition from EU Regulation 2023/1669]

ΤΟ

`Dismantling': means a process whereby a product is separated into its parts and/or components, in a way that could be irreversible, and with the aim to scavenge materials/components (→ RECYCLABILITY INDEX) [Draft definition]

Potential policy implications for a recyclability index:

 displayed/made available by manufacturers for each PV module model placed on the EU market, as an effect of Ecodesign and/or energy labelling measures;

- public procurement: public procurers could use the index as awarding criteria;
- a recyclability index could also be used to modulate fees under collective collection schemes (waste legislation)

How to create synergy btw the PV Regulations with the study presented today?

Development of a recyclability index for photovoltaic products

Depending on timing, incorporation of the index, and related method, in the Regulation(s) as information, or feeding standardization work

Agenda

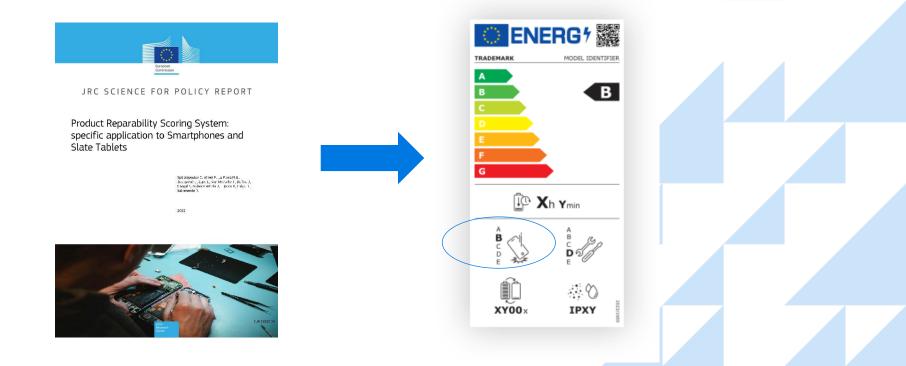
 Policy Background - European Commission 10:40 - 11:00 Scientific Background of the study 11:00 - 11:30 Scoring System Method - Parameters 11:30 - 12:30 Scoring System Method - Priority Materials / Components 14:00 - 14:30 Scoring System Method - Scoring, Weight and Aggregation 14:30 - 15:00 Next steps of the study 15:00 - 15:30 	1	Welcome – 10:30	
 4 Scoring System Method - Parameters 11:30 - 12:30 5 Scoring System Method - Priority Materials / Components 14:00 - 14:30 6 Scoring System Method - Scoring, Weight and Aggregation 14:30 - 15:00 	2	Policy Background – European Commission 10:40 – 11:00	
 5 Scoring System Method – Priority Materials / Components 14:00 – 14:30 6 Scoring System Method – Scoring, Weight and Aggregation 14:30 – 15:00 	3	Scientific Background of the study 11:00 – 11:30	
6 Scoring System Method – Scoring, Weight and Aggregation 14:30 – 15:00	4	Scoring System Method – Parameters 11:30 – 12:30	
	5	Scoring System Method – Priority Materials / Components 14:00 – 14:30	
7 Next steps of the study 15:00 – 15:30	6	Scoring System Method – Scoring, Weight and Aggregation 14:30 – 15:00	
	7	Next steps of the study 15:00 – 15:30	
8 General Questions and Answers 15:30 – 15:55	8	General Questions and Answers 15:30 – 15:55	
9 AOB, closure 16:00	9	AOB, closure 16:00	

Objectives

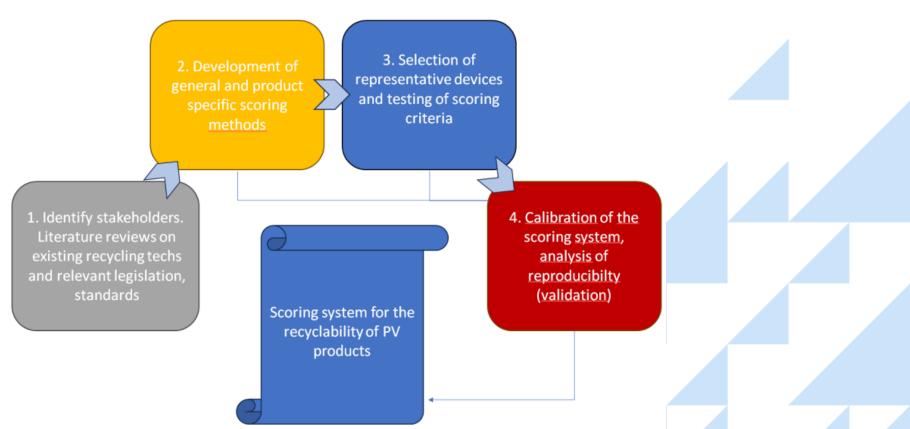
The purpose of this study is:

I. Analysis and **development of scoring systems** (indexes) for the recyclability of PV **modules** and **inverters** (the scoring system for each of the two products can differ).

II. Calibration and validation of the scoring systems on products available in the EU market.

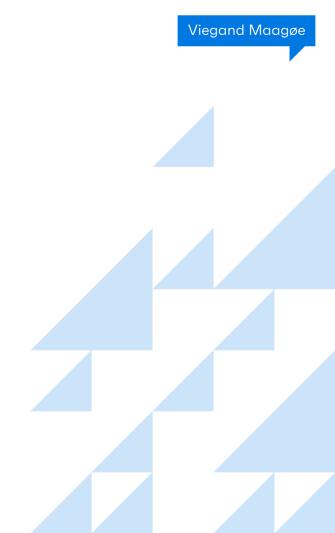


Objectives


14

The purpose of this study is to provide the technical / scientific basis for a future policy implementation.

A similar study carried out by JRC to support Repair Scoring System in EU Energy Label for Smartphones and tablets



Phases and Deliverables

Objectives of this meeting

- 1. Present you the draft scoring methodology
- 2. Collect your inputs on the proposed scoring methodology
- 3. Present next steps of the study and discuss them with you

Existing scoring systems: EPEAT

EPEAT is a voluntary label at global level:

- It assesses various lifecycle environmental aspects of a device (including recyclability aspects).
- Ranks products as Gold, Silver or Bronze based on a set of environmental performance criteria.
- EPEAT is based on a mix of mandatory and optional criteria. The optional criteria are used to rank products.
- Based on NSF/ANSI 457 2019.

Existing scoring systems: EPEAT

Criteria related to recyclability

9.1.1. Required – Product take-back service and processing requirements (corporate)

9.2.1 Optional – Identification of materials for EoL management (only applicable to PV modules)

Viegand Maagøe

5.2.3 Optional – Bromine, chlorine, and fluorine content in electric cables

5.2.4 Optional – Bromine, chlorine, and fluorine content in plastic parts

10.2.1 Required – Enhancing recyclability of packaging materials

Existing scoring systems: RECYCLASS (packaging)

FULL COMPATIBILITY

Green column gathers the preferred design features, that guarantee the best recyclability and quality of the recyclate.

LIMITED COMPATIBILITY

Yellow column lists the second choices for each packaging feature, that have been tested or are known to slightly impact the recycling process and/or the quality of the recyclate.

LOW COMPATIBILITY

Red column classifies the detrimental and disqualifying features that should be avoided when designing packaging, as these strongly impact the recycling process and/or the quality of the recyclate.

Existing scoring systems: RECYCLASS

RecyClass

HDPE Crates & Pallets

	YES - FULL COMPATIBILITY	CONDITIONAL - LIMITED COMPATIBILITY	NO - LOW COMPATIBILITY
MATERIAL COMPOSITION (AMOUNT OF PO IN THE PACKAGING)	A >= 95%, B >= 90% and all packaging features are FULLY compatible with recycling	C >= 70% and all packaging features are FULLY compatible with recycling	D >= 50%, E >= 30% and all packaging features are FULLY compatible with recycling
DESCRIPTION (TEST PROTOCOL)	Materials that passed the testing protocols with no negative impact OR materials that have not been tested (yet), but are known to be acceptable in PE-HD or PP recycling	Materials that passed the testing protocols if certain conditions are met OR materials that have not been tested (yet), but pose a low risk of interfering with PE-HD or PP recycling	Materials that failed the testing protocols OR materials that have not been tested (yet), but pose a high risk of interfering with PE-HD or PP recyclin
DESCRIPTION (METHODOLOGY)	In case of at least one limited compatibility one penalty is applied, lowering the recyclability class from A to B or from B to C	In case of at least one limited compatibility one penalty is applied, lowering the recyclability class from C to D	In case of at least one limited compatibility one penalty is applied, lowering the recyclability class from D to E or from E to F
MATERIALS*	HDPE, Multilayer PE with HDPE prevalence (LLDPE, LDPE, MDPE)	PP <= 10 wt%	Multilayers HDPE with PLA, PVC, PS, PET, PETG; 10 wt% < PP <= 30 wt% (-2 classes); PP > 30 wt% (-3 classes)
COLOURS	Light colours	Dark colours	Non NIR-detectable colours
ADDITIVES	Additives that are unavoidable in processing (stabilizers, antioxidants, lubricants, nucleating agents, peroxides) and density remains < $0.97\ g/cm^3$	Mineral filters (CaCO3, talc) not increasing density more than 0,97 g/cm ²	Additives changing the material density > 1 g/cm³,Flame-retardant additives, plasticizers, Bio-/oxo-/photodegradable additives
COVERING SYSTEM	PE	рр	Any other
INKS	Non-bleeding inks compliant with EuPIA Exclusion Policy		Inks that bleed, Inks non-compliant with EuPIA Exclusion Policy, PVC binders
LABEL MATERIALS*	Low size labels in PE (all with density < 1 g/cm ³); Avoid multiple labels	Low size labels in PP, PO (with density < 1 gicm?); Low size labels in PET, PETG, PLA, PS (all with density > 1 gicm?); Low size labels in Paper without fibreloss; Low size PO-loamed labels; Low size in-Mould-Labels in PE (except beefing Inks); Nord multiple labels	Labels that hinder the recognition of the PE; Labels in non PO-materials with density <1 g/cm ² , Paper labels with fibreloss during recycling process; Cardboard or paper In-Mould-Labels; Aluminium; Metallised labels; PVC
ADHESIVES FOR LABELS	Water soluble adhesive (@ less than 40°C); Water releasable adhesive (@ less than 40°C)	Non-water soluble or non-releasable adhesive approved by RecyClass in combination with filmic PO labels	Non-water soluble adhesive (@ less than 40°C); Non-water releasable adhesive (@ less than 40°C)
DIRECT PRINTING	Laser marked	Direct printing (low extent of printing)	

RECYCLED CONTENT: No change in the recyclability assessment. A separate 'Recycled Plastics Traceability Certification' based on a Chain of Custody approach is available with RecyClass.

* Polymer resin can be either fossil-or bio-based, virgin or recycled . If different grades of the same polymer are present, weights should be cumulated.

** The surface coverage of a low size label is currently under definition.

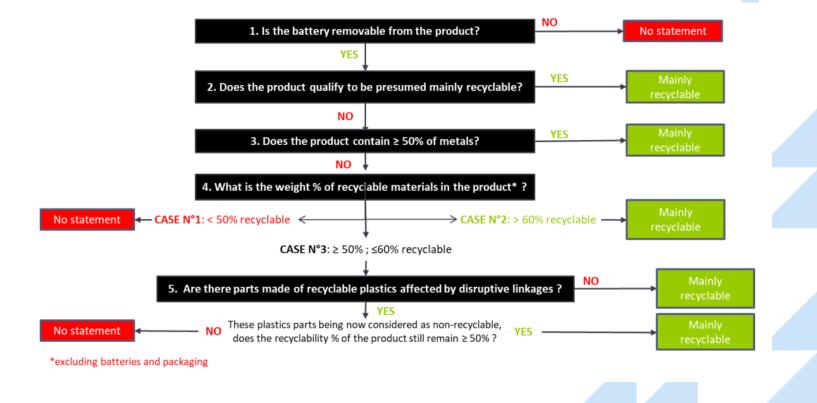
Last update: July 2023

Existing Scoring Systems: FRENCH RECYCLABILITY SCORE

"Anti-waste for a circular economy law" (AGEC) (2020) requires to:

- display the sorting instructions;
- display the recyclability and other Environmental Qualities and Characteristics (EQC) →products under Extended Producer Responsibility (EPR) schemes.

The information to be, based on 5 criteria, displayed is as follows:


- either no mention, if the product does not meet at least one of the 5 recyclability criteria
- "mainly recyclable", if the product is more than 50% recyclable
- "fully recyclable", if the product is more than 95% recyclable.

Existing scoring systems: FRENCH RECYCLABILITY SCORE

- 1. Battery easy to be dismantled
- 2. Products presumed to be mainly recyclable
- 3. Does the product contain >50% metals?
- 4. The table here qualifies the recyclability of the main materials and components
- 5. Disruptive linkages: gluing, overmoulding, co-injection, crimping, heat or ultrasonically insertion

	Materials recyclability				
Green list					
All metals and metal alloys	YES				
ABS not filled with BFR and density < 1.1		Y	ES		
PS not filled with BFR and density < 1.1		Y	ES		
PE not filled with BFR and density < 1.1		Y	ES		
PP not filled with BFR and density < 1.1		Y	ES		
Orange list					
Products categories	cat. 1	cat. 4 & 8 (if > 50 cm)	cat. 5, 6 & 8 (if < 50 cm)	cat. 2	
WEEE collection flow	LHA-cold	LHA-non- cold	SHA	Screens	
ABS-PC not filled with BFR and density < 1.1	NO	NO	YES	YES	
PMMA not filled with BFR	NO	NO	NO	YES	
Concrete	NO	YES	NO	NO	
Glass	YES NO NO NO				
Red list					
All plastics filled with BFR or with density > 1.1 (excepted PMMA)		N	0		
All BFR-filled plastics	NO				
Expanded foams	NO				
Rubbers, silicones, elastomers	NO				
Ceramic	NO				
Glass ceramics	NO				
Wood	NO				
Textiles	NO				
Gas	NO				
All materials not listed elsewhere		N	0		

Existing scoring systems: FRENCH RECYCLABILITY SCORE

23

- 1. Evaluation of Products at Design Phase for an Efficient Disassembly at End-of-Life
- 2. A Design for Disassembly Tool Oriented to Mechatronic Product Demanufacturing and Recycling
- 3. Manufacturing and Assembly for the Ease of Product Recycling: A Review
- 4. The Design Value for Recycling End-of-Life Photovoltaic Panels
- 5. The End of Life of PV Systems: Is Europe Ready for It?
- 6. A critical review of the circular economy for lithium-ion batteries and photovoltaic modules status, challenges, and opportunities
- 7. Emerging waste streams Challenges and opportunities
- 8. PV module eco-design: new encapsulant for high sustainability and recyclability of photovoltaic value chain
- 9. Solar Photovoltaic Module Recycling: A Survey of U.S. Policies and Initiatives
- 10. Analysis of material recovery from photovoltaic panels
- 11. Addressing uncertain antimony content in solar glass for recycling
- 12. Product design and recyclability: How statistical entropy can form a bridge between these concepts Case study of a smartphone

SCIENTIFIC LITERATURE ON SCORING RECYCLABILITY

Key Comparison Criteria

- Scope and Focus
- **Methodologies Used**
- A Challenges Identified
- Solutions Proposed
- Regional Focus
- S Relevance to PV Circularity

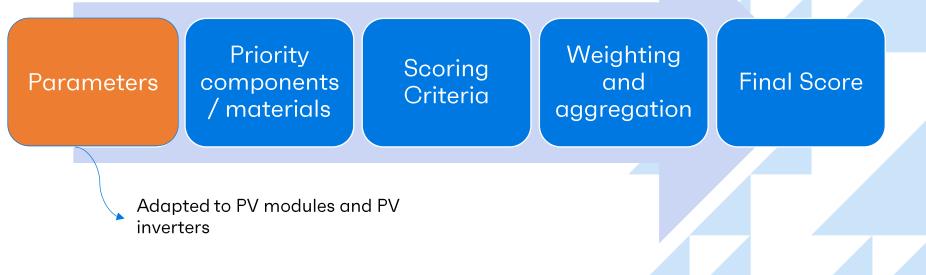
Paper	Scope	Methodology	Challenges Identified	Proposed Solutions	Region	Relevance to PV Circularity
1 Sabaghi et al. (2016)	Design for Disassembly	Hybrid DOE- TOPSIS methodology	Significant parameters affecting disassembly (e.g., accessibility, connection types)	Systematic evaluation of disassemblability; categorized indices (easy, mild, difficult); Design for modulari ty	Cross- industry	High: Provides a structured framework for evaluating PV recyclability based on disassembly parameters and indices
2 Favi et al. (2019)	Design for Disassembly, sustainability in EoL management	LeanDfD Tool (CAD integration and Liaison Database)	Limitations in existing DfD tools; lack of accurate disassembly time calculation	LeanDfD: Quantitative assessment of disassembly time, criticality identification, integration with CAD systems	Cross- industry (mechatron ics, adaptable to PV)	High: The quantitative assessment of disassemblability and recyclability can be adapted for PV systems, helping create a robust recyclability index for PV technologies
3 Shahhosei ni et al. (2023)	Review 9 papers (DFMA, EoL)		Limited integration of design for recycling and EoL in practice; Waste disposal costs often overlooked	Ease of Disassembly Metric (eDiM); Integration of DFMA with sustainability (e.g., 3D scanning for recyclability)	Global	High: The review's insights on disassembly, recyclability indices, and circular economy support provide a comprehensive basis for developing a PV recyclability index. Highlights the need to link design and EoL processes, crucial for PV recycling

Paper	Scope	Methodology	Challenges Identified	Proposed Solutions	Region	Relevance to PV Circularity
4 Calì et al. (2022)	Design strategies (DfR, DfD) optimizing recyclability and durability	Material analysis, thermo-mechanical failure simulations (TMF), and parametric failure models	 Use of non-reversible adhesives and encapsulants; Limited recyclability of some components, e.g. backsheet 	Use of recyclable polymers, minimal encapsulants, optimized geometric parameters, and silicone rubber layers to enhance recyclability and durability	Global	High: This paper directly addresses the optimization of DfR and Dfd, providing valuable design insights for developing a PV recyclability index, particularly in terms of material selection and structural improvements
5 Bošnjak ovíc et al.	Barriers to recycling PV modules and explores	Analysis of material and design complexities	Complexity and variety of materials and designs; multiple recycling techniques	Design for Recycling (DfR) and Design for the Environment approaches to simplify recycling	Europe	High: Highlights critical design and recycling challenges relevant to the PV recyclability index, particularly the necessity for DfR
(2023)	readiness for EoL manag.		required to handle different materials			and the awareness of recycling techniques among designers
6 Heath et al. (2022)	Explores circular economy pathways	Identification of key insights, gaps, and opportunities	-EVA requires high- temperature recycling; alternatives -Hazardous waste -Materials traceability to improve recyclability -High costs	 Non-adhesive release layers. Lead-free solder (e.g., tin-bismuth) but might lower durability. Digital technologies (RFIDs, material passport). Fluorine-free backsheets, but may reduce durability. 	US	

Paper	Scope	Methodology	Challenges Identified	Proposed Solutions	Region	Relevance to PV Circularity
7 Oko Institute (2021)	Waste streams analysis	Analysis of valuable materials and recycling processes.	 Complex material separation (delamination, Si purification) Economic inefficiencies. Hazardous substances. Logistic challenges in access. 	 Advanced recycling technologies for better recovery. Improved design to reduce hazardous materials. Streamlined disassembly processes (considering logistics). 	Global	 Emphasize technologies for recovering valuable materials. Incorporate design strategies that minimize hazards. Address logistics in disassembly for improved recyclability assessments.
8 Izzy, 2023	New encapsulant materials	Comparative analysis of encapsulation materials (EVA, TPO, POE)	 Current EVA encapsulation hinders high-value recycling. Limited options for sustainable alternatives. 	 Explore thermoplastics (TPO) and elastomers (POE) for encapsulation. Enhance physical and optical properties of new materials. 	EU	 Advocate for encapsulant innovations that facilitate recycling. Integrate material selection into the recyclability index to promote circularity.
9 Curtis et al. (2021)	Policy barriers in PV module recycling	Survey and SHs interviews	 Lack of information exchange among solar value chain actors. No mandates for manufacturers to disclose chemical composition. Variable EoL management costs and documentation issues. 	Enhance transparency by incentivizing labelling of PV module composition. - Improve information exchange to lower costs and enhance stakeholder relationships.	US	- Highlights the need for policies promoting information sharing to improve recyclability and reduce EoL costs.

Paper	Scope	Methodology	Challenges Identified	Proposed Solutions	Region	Relevance to PV Circularity
10 JRC (2016)	Material recovery from silicon PV panels	Analysis of recycling treatments and composition testing	 Uncertainty in panel composition reduces treatment efficiency. Presence of hazardous substances complicates recycling methods. Lack of detailed composition information from manufacturers 	 Encourage manufacturers to disclose detailed panel compositions. Prioritize recycling methods based on composition (e.g., avoiding halogenated plastics). 	EU & Global	- Emphasizes the importance of material composition data for optimizing recycling processes, relevant for recyclability assessments.
11 ESIA (2023)	Antimony content in solar glass for recycling	Review of recycling processes for float glass and antimony impacts	 Recycling antimony- containing glass is economically inefficient and complicates manufacturing processes. Lack of transparency in glass composition hinders recycling efforts. 	 Mandate disclosure of solar glass composition and manufacturing processes in Ecodesign Regulation. Implement measures to improve recyclability of glass. 	EU & Global	- Stresses the need for transparency in material composition for effective recycling, informing recyclability indices for PV modules.
12 Roithner et al. (2022)	Statistical entropy as a measure of recyclability	Recyclability assessment method using entropy	- Existing product designs often fail to consider material distribution and recyclability potential.	 Use statistical entropy to evaluate recyclability during the design phase. Identify design weaknesses to improve recyclability. 	EU & Global	- Introduces a novel metric for evaluating product design in terms of recyclability, applicable to PV module design considerations.

DECALOGUE TO DEVELOP SCORING RECYCLABILITY METHOD

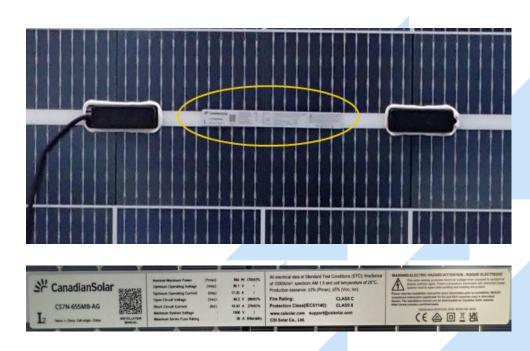

- Integrate DfR Principles: Emphasize design for recycling to enhance end-of-life recovery.
- **Optimize Material Selection**: Use recyclable materials and minimize hazardous substances.
- Enhance Component Transparency: Ensure manufacturers label materials and provide detailed product compositions.
- **Prioritize Recyclable Components**: Focus on key materials like aluminum, glass, and critical metals (e.g., silver, indium).
- **Facilitate Disassembly**: Design products for easy disassembly, reducing costs and damage during recycling.
- **Incorporate Digital Tools**: Utilize technologies (e.g., RFID, QR codes) for tracking materials and components.
- Address Design Variability: Standardize designs to simplify recycling processes and reduce economic inefficiencies.
- Focus on Lifecycle Assessment: Use LCA methodologies to evaluate and optimize the environmental impact of materials.
- Engage Stakeholders: Foster collaboration between manufacturers, recyclers, and policymakers for better recycling strategies.
- **Develop Scoring Metrics**: Create clear scoring criteria that reflect the recyclability potential based on the insights gathered.

Agenda

 Policy Background – European Commission 10:40 – 11:00 Scientific Background of the study 11:00 – 11:30 Scoring System Method – Parameters 11:30 – 12:30 Scoring System Method – Priority Materials / Components 14:00 – 14:30 Scoring System Method – Scoring, Weight and Aggregation 14:30 – 15:00 Next steps of the study 15:00 – 15:30 General Questions and Answers 15:30 – 15:55 	1	Welcome – 10:30	
 4 Scoring System Method - Parameters 11:30 - 12:30 5 Scoring System Method - Priority Materials / Components 14:00 - 14:30 6 Scoring System Method - Scoring, Weight and Aggregation 14:30 - 15:00 7 Next steps of the study 15:00 - 15:30 	2	Policy Background – European Commission 10:40 – 11:00	
 5 Scoring System Method - Priority Materials / Components 14:00 - 14:30 6 Scoring System Method - Scoring, Weight and Aggregation 14:30 - 15:00 7 Next steps of the study 15:00 - 15:30 	3	Scientific Background of the study 11:00 – 11:30	
 6 Scoring System Method – Scoring, Weight and Aggregation 14:30 – 15:00 7 Next steps of the study 15:00 – 15:30 	4	Scoring System Method – Parameters 11:30 – 12:30	
7 Next steps of the study 15:00 – 15:30	5	Scoring System Method – Priority Materials / Components 14:00 – 14:30	
	6	Scoring System Method – Scoring, Weight and Aggregation 14:30 – 15:00	
8 General Ouestions and Answers 15:30 - 15:55	7	Next steps of the study 15:00 – 15:30	
	8	General Questions and Answers 15:30 – 15:55	
9 AOB, closure 16:00	9	AOB, closure 16:00	

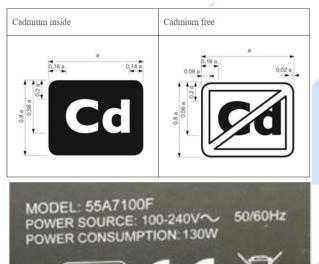
Development of the scoring method

Key steps for developing the recyclability scoring system:

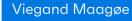

Parameters: summary table

33

Type of parameters	Ν	Parameter
	1	Technology identification
	2	Information on the presence (or absence) of substances of concern
Service-Related Parameters	3	Dismantling information and condition for access
	4	Information on composition (including critical and strategic raw materials): #4.1 Disclosure of material composition Information on composition (including critical and strategic raw materials): # 4.2 Disclosure of presence and location of Critical, Strategic and Environmental Relevant materials
	5	Number of steps for the dismantling of priority parts (dismantling depth)
Dismantling Related Parameters	6	Types of tools to dismantle priority parts
	7	Removability of fasteners to dismantle priority parts, reversibility of sealants and encapsulants
Material based	8	Level of concentration of hazardous substances and other substances affecting the recycling process
parameters	9	Selection of materials based on recyclability complexity
	10	Combination of materials used / homogeneity


1. Technology Identification

- Distinction of PV technologies is not always possible by optical inspection, especially in the case of thin film PV modules (as indicated in the EN 50625-2-4:2017 – Annex AA)
- Identifying composition and construction may permit sorting and higher tolerance at the recycling plants



2. Information on the presence of SoC

- Information can be added to the product data plate, embossed or engraved on the product itself or accessible from the product by electronic means in the form of bar codes, radio-frequency identification (RFID) or product passport based on blockchain technologies (in the future)
- Example in current Ecodesing on Electronic Displays (Regulation on ecodesign for electronic displays (EU) 2019/2021)

3. Dismantling information / access

The dismantling instructions freely available on third party database / website. This would ensure that this information will be available for future use. The instruction should also include:

- the unequivocal **product identification;**
- the **dismantling map** or exploded view;
- the detailed step-by-step instructions on the dismantling of priority parts, including information on the unfastening operations, type of tools needed;
- diagnostic fault and error information (including manufacturer-specific codes, where applicable) component and diagnosis information (such as minimum and maximum theoretical values for measurements);
- **type of recycling technology needed** to carry our specific recycling steps.

4. Information on composition

4.1 Disclosure of composition

- Different levels of ambitions could be awarded based on the percentage of product mass disclosed (e.g. 70% 90% 95% 99%).
- A similar scoring criterion is provided by the NSF/ANSI 457 standard where the manufacturer shall demonstrate to have in place a system for recording information, calculating percentages of data acquired.

4.2 Disclosure of presence and location of Critical, Strategic and Environmental Relevant materials

PV Modules

Cadmium, Silicon metal, Silver, Aluminium, Copper, Indium, Gallium, Germanium, Tellurium, Lead, Antimony Tin

PV Inverters

Aluminium, Gold, Lead, Copper, Silicon carbide, Silver, Indium, Gallium, Tantalum, Nickel, Palladium Tin, Cobalt, Zinc

5. Dismantling Depth

This scoring criterion award points based on the **number of dismantling steps (N)** to reach and remove specific priority parts. For the calculation of dismantling steps, the following rules are proposed:

- the dismantling depth count is completed when the **target part is separated** and individually accessible.
- where multiple tools need to be used simultaneously, **the use of each tool counts** as a separate step.
- operations like applying thermal or chemical treatments to the product in order to facilitate the dismantling are also counted as steps.
- The Dismantling Depth score (DDi) for each priority part shall be calculated based on the number of steps required to remove that part from the product. **The counting of the steps for each part starts from the fully assembled product.**

6. Types of tools to dismantle priority parts

This scoring criterion award points based on the **complexity of tools needed** to reach and remove specific priority parts.

In this context

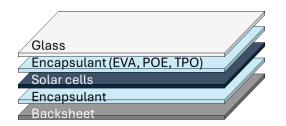
- **'basic tools'** means list of tools specifically defined for the product groups under assessment, considering the preliminary list in Table A.3 of the standard EN45554:2020;
- **'commercially available tool'** means a tool that is available for purchase by the general public and is neither a basic tool nor a proprietary tool;
- **'proprietary tool'** means a tool that is not available for purchase by the general public or for which any applicable patents are not available to license under fair, reasonable and non-discriminatory terms.

Viegand Maagøe

7. Removability of fasteners, reversibility of sealants and encapsulants

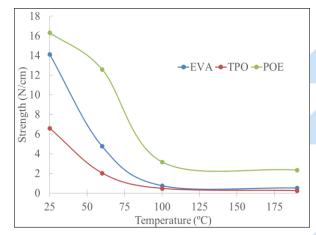
7.1 Type of fasteners to dismantle priority part (X) (inverters)

Taking apart components for recycling can have different levels of complexity and circularity based on the type of fastening (or joining) technique applied:

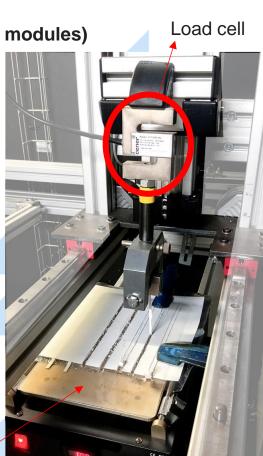

- **"reusable fasteners"** An original fastening system that can be completely re-used, or any elements of the fastening system that cannot be reused are supplied with the new part for a repair, re-use or upgrade process.
- **"removable fastener"** means a fastener that is not a reusable fastener, but whose removal does not damage the product, or leave residue, which precludes reassembly (e.g. a screw is typically designed in a way that allows fastening and unfastening);
- **"non-removable fasteners"** means a permanent fastening (joining) techniques that makes the separation of the target part from the rest of the product not feasible or only feasible by damaging the part itself or the entire product.

7. Removability of fasteners, reversibility of sealants and encapsulants

#7.2 Removability of the encapsulant after heating process (mono-facial PV modules)


Measure the reversibility of the encapsulant bond at conditions simulating a thermal-based recycling process (hot-knife) by a peel-off test applied to the interface encapsulant-glass.

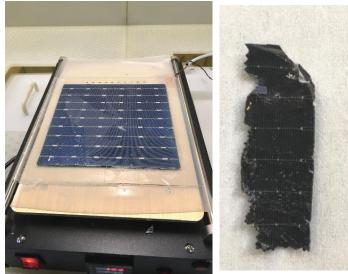
Peel-off test at different temperatures (25°C, 60°C, 100°C, 190°C)

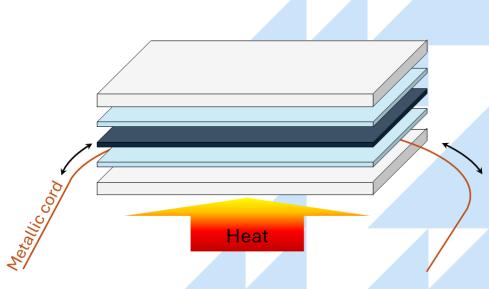


Preliminary test: The **adhesion difference decreases as test T increases**, especially above 60°C.

Parameter: force decrease from T_{amb} to $T_{dissamble}$

Heater

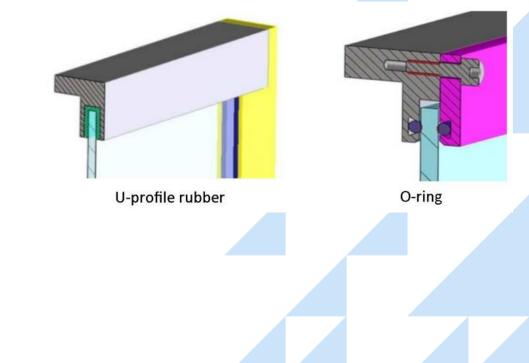



7. Removability of fasteners, reversibility of sealants and encapsulants

#7.3 Removability of the encapsulant after heating process (bi-facial PV modules)

We propose a hot-wire technique (Peel-off test cannot be applied in glass-glass modules)

Heat up the panel and measure at which temperature and force the module can be dismantled by means of a metallic cord in standardised conditions / force measured by a load cell



7. Removability of fasteners, reversibility of sealants and encapsulants

#7.4 Removability of the frame (only applicable to PV modules with frame)

According to Bilbao et a. (2021) Oring and U-profile techniques are alternative, easy-to-remove edgesealing solutions that are suitable for PV modules. This sub-criterion aims to penalise the use of adhesives for fixing the frame on the surface of the module and award the presence of alternative edge sealing techniques, as the use of O-ring or **U-profile**

8. Concentration of hazardous substances and other substances affecting the recycling process

This parameter aims to assess the concentration of **substances of concern, including specific substances affecting the recycling process**, in specific homogenous parts of the product.

Reducing the presence of these substances is likely to enhance the possibilities and economic profitability of recycling of PV products and decrease the negative impacts on the health of workers in recycling plants.

The identifed substances for this parameter include:

- Fluorine in backsheets
- Antimony in glass
- Brominated flame retardants in plastic components

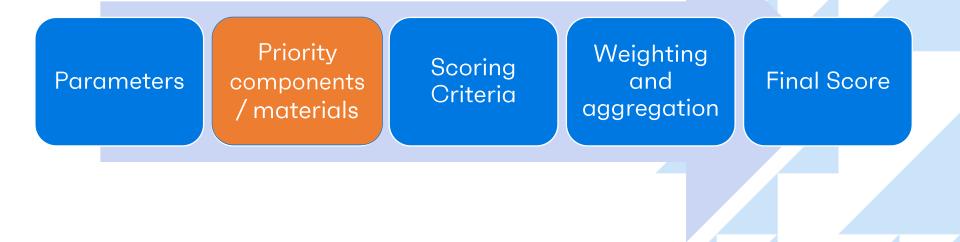
9. Selection of materials based on recyclability complexity

- **green list:** substances that are the easiest to be recycled (metals and metal alloys such as copper, aluminium, steel, silver).
- **orange list:** substances that are easy to be recycled but for which the fulfilment of specific design conditions should be verified (e.g. plastics as ABS, PE and PP not filled with BFR; glass without intentionally added antimony).
- **red list:** substances that are more complex to recycle: thermoset and composites, rubbers, silicones, elastomers, foams, BFR-filled plastics, magnets).

10. Combination of materials used

This scoring criterion award points based on the way different materials are combined in single parts and aims to award design based on homogeneous or separable materials versus the use of **"disruptive" linkages** (non-separable material combinations). The assessment has to be carried out at priority part level.

Identified disruptive linkages include:


- **Moulding different material types together by multiple-K processes** (different plastic materials injected into the same mould, over-moulding, or in-mould decoration).
- Connections that enclose a material permanently. Avoid methods such as moulding-in inserts into plastics, rivets, staples, press-fits, bolts, bolt and nuts, brazing, welding, and clinching.
- Use of coatings on plastics.
- Plating, galvanizing, and vacuum-metallization as a coating on plastics.
- Fixing ferrous metals to non-ferrous metals in either parts or fasteners.
- **Multi-material injection moulding** is the process of moulding two or more different materials into one plastic part, at the same time.

Agenda

 Policy Background - European Commission 10:40 - 11:00 Scientific Background of the study 11:00 - 11:30 Scoring System Method - Parameters 11:30 - 12:30 	
/ Secring System Mathed Dargemeters 11:20 12:20	
4 Scoring System Method – Parameters 11:30 – 12:30	
5 Scoring System Method – Priority Materials / Components 14:00 – 14:30	
6 Scoring System Method – Scoring, Weight and Aggregation 14:30 – 15:00	
7 Next steps of the study 15:00 – 15:30	
8 General Questions and Answers 15:30 – 15:55	
9 AOB, closure 16:00	

Development of the scoring method

Key steps for developing the recyclability scoring system:

Key criteria for prioritization

1. Mass Content Relevance

• Higher relevance assigned to abundant materials in PV modules and PV inverters.

Viegand Maagøe

2. Environmental Relevance

- Using Life Cycle Assessment (LCA) and the Environmental Footprint 3.0 method.
- Ecoinvent database for background data.
- Materials' impacts normalized with established factors.
- 3. Criticality and Strategic Relevance
 - Based on EU CRM list (2023).
 - Scale of 1 to 4 (1 = not critical, 4 = critical raw material).

4. Economic / Demand Relevance

- Prioritizes high-value materials with strong market demand.
- Data from Trading Economics and Price Metal websites.

Typical Si PV module Break-down

Material/pa	arts	Concentration (%)
Glass		73,19
		10,17
Polymers	EVA (ethylvinylacetate)	3,55
Tedlar (polyxinylfluoride)		
Solar cell	•	3,43
Adhesive		1,14
Copper		0,56
Junction bo	x	1,31

Viegand Maagøe

SOLAR CELL

Material	Concentration (%)
Silver	0,69
Aluminium	9,00
Lead	0,04
Tin	0,06
Silicon	90,00
Copper	0,01

Environmental Aspect & Material Prioritization in PV Modules

MASS CONTENT

Glass is the most relevant material

ENVIRONMENTAL IMPACT CALCULATION

- 1. Impact Calculation:
 - Normalized impacts were calculated using Simapro and the Environmental Footprint method.
 - Ag shows the highest cumulative environmental impacts in PV modules.
- 2. Impact Categories:
 - **Resource Use (minerals and metals)** is the most significant category.
 - Followed by Freshwater eutrophication and Ecotoxicity in freshwater.

CRITICALITY INSIGHTS

- **Si**: Critical and strategic; EU only produces 0.6% of global crystalline silicon cells.
- AI: Critical, but not strategic.
- Ag: Not classified, but heavily used in PV module production.
- Ge: Marginal impact on energy markets.

ECONOMIC VALUE

•Ag is the most valuable material in solar cells, with a price over €953/kg, more than 1500 times higher than other

⁵¹ materials.

Material	Mass- content	Env. impacts	Criticality / EU strategy	Economic / demand	Weighted Relevance score
Silver	3,28E-04	1,00	0,75	1,00	2,75
Glass (material)*	1,00	9,19E-06	0,50	6,50E-04	1,50
Silicon*	0,04	7,40E-05	1,00	0,02	1,06
Aluminium	0,14	8,55E-05	0,75	2,64E-03	0,90
Copper	0,01	9,19E-03	0,75	0,01	0,78
Tin	2,73E-05	3,41E-02	0,50	0,03	0,57
Lead	1,37E-05	1,67E-03	0,50	2,30E-03	0,50
Ethyl vinyl acetate (EVA)	0,09	3,28E-05	0,25	1,94E-03	0,34
Tedlar (PVF)/Polydivinyl fluoride (PVDF)	0,05	2,17E-04	0,25	0,01	0,31

Environmental Aspect & Material Prioritization in PV Modules

Priority parts for PV modules
Solar Cell (silver, silicon, tin, lead)
Glass
Frame (aluminium)
Cables (copper)
Junction box (copper)

Viegand Maagøe

Typical inverter Break-down

Material	Concentration (%)
Aluminium (CRM)	19%
Copper (SRM)	28%
Nickel (SRM)	0,4%
Silicon	9%
Tin	0,4%
Gold	0,4%
Silver	1%
Lead	0,2%
Palladium	0,002%
Steel	21%
Cobalt	0,002%
Zinc	0,002%
Specific plastic polymers:	11%
FR-4, Glass-reinforced epoxy laminate material	1%
Ferrite	2%

Viegand Maagøe

Environmental Aspect & Material Prioritization in PV Inverters

MASS CONTENT

AI, Cu and steel are the most relevant materials

ENVIRONMENTAL IMPACT CALCULATION

- 1. Impact Calculation:
 - Normalized impacts were calculated using Simapro and the Environmental Footprint method.
- 2. Impact Categories:
 - Resource Use (minerals and metals) is the most significant category.
 - · Followed by Climate change and Resource use (fossils).

CRITICALITY INSIGHTS

- **Si, Pd** Critical and strategic; EU only produces 0.6% of global crystalline silicon cells.
- AI: Critical, but not strategic.
- Cu, Ni, : Not classified, but heavily used in PV inverters.

ECONOMIC VALUE

•Au and Pd are the most valuable material in solar cells, with a price ca €70k and €30k/kg respectively; more than 70000 times higher than other materials.

Metal/Material	Mass-	Env.	Criticality /	Economic /	Weighted
Metal/Material	content	impacts	EU strategy	demand	score
Gold	2,82E-03	2,50E-01	0,13	2,50E-01	0,63
Copper (SRM)	0,25	2,77E-05	0,19	3,51E-05	0,44
Aluminium (CRM)	0,17	2,60E-07	0,25	9,05E-06	0,42
Palladium	0,00	3,22E-03	0,25	1,10E-01	0,36
Silicon	0,08	6,11E-07	0,19	6,04E-06	0,27
Steel	0,19	7,82E-09	0,06	1,22E-05	0,25
Silver	0,01	3,04E-03	0,19	3,43E-03	0,20
Nickel (SRM)	0,00	8,40E-06	0,19	6,21E-05	0,19
Tin	0,00	1,04E-04	0,13	1,17E-04	0,13
Ferrite	0,02	2,85E-08	0,06	8,61E-08	0,08
Glass-reinforced epoxy (FR4)	0,01	3,47E-03	0,06	1,1E-05	0,07
Lead	0,00	5,09E-06	0,06	7,88E-06	0,06
Cobalt	0,00	6,11E-05	0,06	9,76E-05	0,06
Zinc	0,00	5,84E-06	0,06	1,03E-05	0,06

Environmental Aspect & Material Prioritization in PV Inverters

Viegand Maagøe

Priority parts for PV inverters

Printed Circuit Board (PCB) (gold, silver,

copper, tin, lead)

Heat sink (copper, aluminium)

Casing (aluminium)

Cables (copper)

DC link Capacitors (palladium, tantalum)

Agenda

 Policy Background – European Commission 10:40 – 11:00 Scientific Background of the study 11:00 – 11:30 Scoring System Method – Parameters 11:30 – 12:30 Scoring System Method – Priority Materials / Components 14:00 – 14:30 Scoring System Method – Scoring, Weight and Aggregation 14:30 – 15:00 Next steps of the study 15:00 – 15:30 	1	Welcome – 10:30	
 4 Scoring System Method - Parameters 11:30 - 12:30 5 Scoring System Method - Priority Materials / Components 14:00 - 14:30 6 Scoring System Method - Scoring, Weight and Aggregation 14:30 - 15:00 7 Next steps of the study 15:00 - 15:30 	2	Policy Background – European Commission 10:40 – 11:00	
 5 Scoring System Method - Priority Materials / Components 14:00 - 14:30 6 Scoring System Method - Scoring, Weight and Aggregation 14:30 - 15:00 7 Next steps of the study 15:00 - 15:30 	3	Scientific Background of the study 11:00 – 11:30	
 6 Scoring System Method – Scoring, Weight and Aggregation 14:30 – 15:00 7 Next steps of the study 15:00 – 15:30 	4	Scoring System Method – Parameters 11:30 – 12:30	
7 Next steps of the study 15:00 – 15:30	5	Scoring System Method – Priority Materials / Components 14:00 – 14:30	
	6	Scoring System Method – Scoring, Weight and Aggregation 14:30 – 15:00	
	7	Next steps of the study 15:00 – 15:30	
8 General Questions and Answers 15:30 – 15:55	8	General Questions and Answers 15:30 – 15:55	
9 AOB, closure 16:00	9	AOB, closure 16:00	

Development of the scoring method

Key steps for developing the recyclability scoring system:

Scoring Criteria

	Less recyc	recyclable			
5 scoring options	1	2	3	4	5
4 scoring options	1	2		4	5
3 scoring options	1		3		5
2 scoring options	1				5

Scoring Criteria: service-related parameters

N∘	Parameters	Product specific parameters	Applicability	Scoring Criteria	Points
1	Technology identification		PV modules	No technology identification available/accessible on the product itself.	1
				Technology identification available/accessible on the product itself.	5
2	Information on the presence (or absence) of		PV modules and PV inverters	No information specifying the presence/absence of substances of concern on the product itself.	1
	substance of concern		Information specifying the presence/absence of substances of concern on the product itself.	5	
3	Availability of dismantling		PV modules and PV inverters	Dismantling instructions not freely available on a third-party database / website.	1
	instructions			Dismantling instructions freely available on a third- party database / website.	5

Scoring Criteria: service-related parameters

N∘	Parameters	Product specific parameters	Applicability	Scoring Criteria	Points
4	Information on composition	4.1 Disclosure of material composition	PV modules and PV inverters	Disclosure of material composition (≤70% of product mass) freely available on a third-party database / website.	1
				Disclosure of material composition (> 70% of product mass) freely available on a third-party database freely available on a third-party database / website.	2
				Disclosure of material composition (> 90% of product mass) freely available on a third-party database / website.	3
				Disclosure of material composition (> 95% of product mass) freely available on a third-party database / website.	4
				Disclosure of material composition (> 99% of product mass) freely available on a third-party database / website.	5

Scoring Criteria: service-related parameters

N∘	Parameters	Product specific parameters	Applicability	Scoring Criteria	Points
4	Information on composition	4.2 Disclosure of presence and location of Critical, Strategic and	PV modules and PV inverters	Presence and location of CRM, Strategic and Environmental Relevant materials not disclosed Presence and location of CRM, Strategic and Environmental Relevant materials only partially disclosed	1 3
		Environmenta I Relevant materials		Presence and location of CRM, Strategic and Environmental Relevant materials fully disclosed and available on a third-party database / website.	5

Scoring Criteria: dismantling-related parameters

N٥	Parameters	Product specific paramete rs		Scoring Criteria	Point s
5	Number of		PV modules	DDi > A steps	1
	steps for the		and PV	A steps ≥ DDi > B steps	2
	dismantling invert of priority part (X)	inverters	B steps ≥ DDi > C steps	3	
				C steps ≥ DDi > D steps	4
				DD ≤ D steps	5
6	Type of tools		PV modules	Proprietary tools	1
	to dismantle		and PV PV	Commercially available tools	2
	priority part		inverters	Basic tools	4
	(X)			No tools	5

Scoring Criteria: dismantling-related parameters

N٥	Parameter s	Product specific parameters	Applicabilit Y	Scoring Criteria	Poin ts
7	Removabil ity of	7.1 Type of fasteners to	PV Inverters	Not-removable fasteners	1
	fasteners, reversible	dismantle priority part (X)		Reusable or Removable fasteners	5
	sealants and encapsula	7.2 Removability of the encapsulant after	Mono-facial PV modules	"Non-reversible encapsulant": the product / components are damaged during the testing peel-off process (the peel-off test is not passed)	1
	nt layers	heating process: peel-off test		Difficult to remove encapsulant: based on the measurement of the drop of the adhesion force between 100 at 140 °C	3
			Easy to remove encapsulant ²² : based on the measurement of the drop of the adhesion force between 100 at 140 °C	5	
		7.3 Removability of the	of the modules encapsulant from the glass after heating process:	"Non-removable encapsulant": the product / components are damaged during the dismantling process	1
		encapsulant from the glass after heating process:		Difficult to remove encapsulant: the dismantling with the cord is feasible but only at a temperature equal or higher than 140 °C	3
		metal cord test		Easy to remove encapsulant: the dismantling with the cord is feasible but only at a temperature higher than 150 °C	5
		7.4 Removability	PV modules	Presence of adhesive on the glass / frame interface	1
		of the frame	with frame	Use of edge sealing techniques (e.g. O-ring or U-profile design)	5

Scoring Criteria: material-based parameters

N٥	Parameters	Product specific parameters	Applicability	Scoring Criteria	Point s
8	Concentratio n of substances	Applicable to the following parts /	PV modules PV inverters	Substance concentration by weight (%) in homogeneous material > A%	1
	of concern, including substances	substances in PV panels		Substance concentration by weight (%) in homogeneous material ≤ A% and > B%	2
	affecting the recycling process in	 Antimony in Glass; Fluorine in 		Substance concentration by weight (%) in homogeneous material ≤ B% and > C%	3
	Priority Part (X)	backsheet 3) Brominated flame		Substance concentration by weight (%) in homogeneous material ≤ C% and > D%	4
		retardants in plastic components		Substance concentration by weight (%) in homogeneous material ≤ D%	5

Viegand Maagøe

Scoring Criteria: material-based parameters

N°	Parameters	Product specific parameters		Scoring Criteria	Point s
9	Selection of materials		PV modules and PV	Use of materials with low recyclability (red list)	1
	based on their recyclability		inverters	Use of materials with conditional recyclability (orange list)	3
	complexity in Priority Part (X)			Use of materials with high recyclability (green list)	5
10	Combination of materials used /		PV modules and PV inverters	Use of combined materials that are not separable.	1
homogeneity in Priority Part (X)			Use of combined materials that are separable (allow easy liberation)	3	
				Use of homogenous material in a specific part	5

Scoring Aggregation: PV panels

Parameter	Score for priority part/material i [1-5]	Weight for priority part/material i [%]	Parameter Score [1-5]	Parameter Weight [%]	Final Score [1-5]
#1 Technology Identification			S ₁	W_1	
#2 Information on the presence (or absence) of substance of concern			S ₂	W_2	
#3 Availability of dismantling instructions			S ₃	W ₃	
#4.1 Disclosure of material composition			S _{4.1}	W _{4.1}	
#4.2 Disclosure of presence and location of Critical, Strategic and Environmental Relevant materials			S _{4.2}	W _{4.2}	
#5 Dismantling depth	S _{5.i}	ω _{5.i}	$S_5 = \sum_{i=1}^N S_{5,i} \cdot \omega_i$	W ₅	
#6 Tools (type)	S _{6,i}	ω _{6,i}	$S_6 = \sum_{i=1}^N S_{6,i} \cdot \omega_i$	W ₆	
Optional #7.2 or #7.3 Removability of the encapsulant after heating process			S _{7.2} or S _{7.3}	W _{7.2} or W _{7.3}	Recyclability Index R = $\sum_{j=1}^{10} S_j \cdot W_j$
Optional #7.4 Removability of the frame (only applicable to PV modules with frame)			S _{7.4}	W _{7.4}	
#8 Substances of concern	S _{8,i}	ω _{8,i}	$S_8 = \sum_{i=1}^N S_{,i} \cdot \omega_i$	W ₈	
#9 Selection of materials based on their recyclability complexity	S _{9,i}	ω _{9,i}	$S_9 = \sum_{i=1}^N S_{,i} \cdot \omega_i$	W ₉	
#10 Combination of materials used / homogeneity	S _{10,i}	ω _{10,i}	$S_{10} = \sum_{i=1}^{N} S_{,i} \cdot \omega_i$	W ₁₀	

Scoring Aggregation: PV inverters

Parameter	Score for priority part/material i [1-5]	Weight for priority part/material i [%]	Parameter Score [1-5]	Parameter Weight [%]	Final Score [1-5]
#2 Information on the presence (or absence) of substance of concern			S ₂	W ₂	
#3 Availability of dismantling instructions			S ₃	W ₃	
#4.1 Disclosure of material composition			S _{4.1}	W _{4.1}	
#4.2 Disclosure of presence and location of Critical, Strategic and Environmental Relevant materials			S _{4.2}	W _{4.2}	$R = \sum_{j=1}^{10} S_j \cdot W_j$
#5 Dismantling depth #6 Tools (type)	S _{5,i} S _{6,i}	ω _{5,i} ω _{6,i}	$S_5 = \sum_{i=1}^N S_{5,i} \cdot \omega_i$ $S_6 = \sum_{i=1}^N S_{6,i} \cdot \omega_i$	W ₅ W ₆	$\Delta_{j=1} S_j \cdot W_j$
#7.1 Fasteners (type) #8 Substances of concern	S _{7,i} S _{8,i}	$\omega_{7,i}$ $\omega_{8,i}$	$S_{7.1} = \sum_{i=1}^{N} S_{7,i} \cdot \omega_i$ $S_8 = \sum_{i=1}^{N} S_{8,i} \cdot \omega_i$	W _{7.1} W ₈	
#9 Selection of materials based on their recyclability complexity	S _{9,i}	ω _{9,i}	$S_9 = \sum_{i=1}^N S_{9,i} \cdot \omega_i$	W ₉	
#10 Combination of materials used / homogeneity	S _{10,i}	ω _{10,i}	$S_{10} = \sum_{i=1}^{N} S_{10,i} \cdot \omega_i$	W ₁₀	

Scoring Aggregation: PV inverters

Save a backup on your local computer (disable if you are using a public/shared computer)

🗌 🛄 Helio Nieves ESPINOSA (logout) | Help 👻 | Lang

Views

Languages

Contact

Save as Draft

Report abuse

Standard Accessibility Mode

Weighting of parameters for the recyclability index of PV modules and inverters

Declaration
Declar

Introduction

This questionnaire is part of the study commissioned by The European Climate, Infrastructure and Environment Executive Agency (CINEA), for the development of recyclability indexes for photovoltaic products (PV modules and inventers).

In particular, the aim is to assess the importance of the weighting that the parameters that compose the index can have

For further details about recycling parameters and definitions please check the interim Report for Consultation at the pr oject website: https://www.pvrecyclability-index.eu/documents/

Note: please be aware that all responses will be treated confidentially, no answer will be linked to any respondent.

General information

Company name

Country of operation

.

Type of organisation Recycler Manufacturer Research institution Other (please specify) Annexer 5

Please specify here (other type of organisation)

Service-related parameters

Please prioritise the following parameters of the recyclability index, indicating their level of importance to a successful recycling Use dragtdrop or the up/down buttons to change the order or accept the initial order.

	lechnology identification
# O O #	Information on the presence (or absence) of substances of concern
00	Dismantling information and condition for access

E O Information on composition (including critical and strategic raw materials)

Do they have the same level of importance? i.e. 25% each, or do you consider that there is one that has higher relevance?

Different level, see Table below

Don't know

Provide here the level of importance in percentage, that the parameter should have (sum up to 100%)

	Weighting (%)
Technology identification	4
Information on the presence/absence of substances of concern	4
Dismantling information and condition for access	
Information on composition (including critical and strategic raw materials)	

If we look at "Information on composition (including critical and strategic raw materials)", which sub parameter out of the following has a higher level of importance to a successful recycling Use disaddress or the uniform burners to change the order or access the initial order.

Se dragddrop or the up/down burtons to change the order or accept the initial order.

E
Disclosure of material composition

E
Disclosure of presence and location of Critical, Strategic and Environmental Relevant materials

Dismantling-related parameters	D	isman	tlina-	rela	ted	paran	neters
--------------------------------	---	-------	--------	------	-----	-------	--------

Please prioritise the following parameters of the recyclability index, indicating their level of importance to a successful recycling Use drag&drop or the up/down buttons to change the order or accept the initial order.

II Number of steps for the dismantling of priority parts (dismantling depth)

II 🛛 🗖 Types of tools to dismantle priority parts

II . Removability of fasteners to dismantle priority parts, reversibility of sealants and encapsulants

Material-based parameters

Please prioritise the following parameters of the recyclability index, indicating their level of importance to a successful recycling Use drag&drop or the up/down buttons to change the order or accept the initial order.

II . Level of concentration of hazardous substances and other substances affecting the recycling process

II ____ Selection of materials based on recyclability complexity

II 🛛 🗠 Combination of materials used / homogeneity

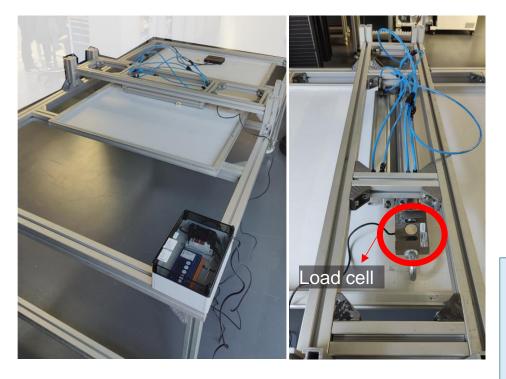
Section Title

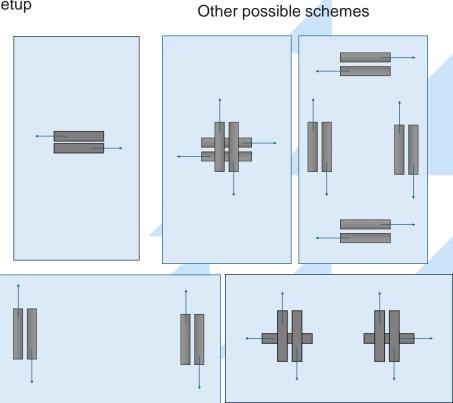
Closing remarks

¥ €U5urvey

Intellectual Property: Built by DG DIGIT and funded under the ISA, ISA² and Digital Europe Programme (DIGITAL) EUSurvey is fully open source and published under the EUPL licence. You can download the source code from GitHub: https://github.com/EUSurvey Languages policy Privacy policy Legal notice

EUSurvey Privacy Statement

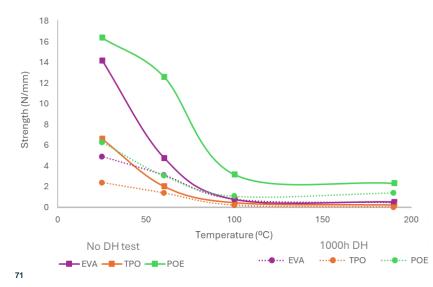

Terms of Service

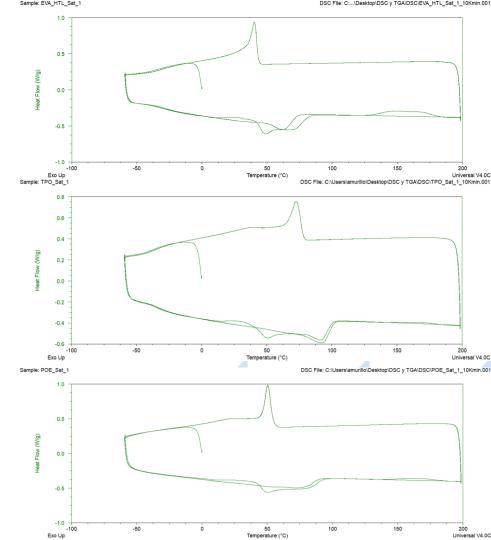

Cookies

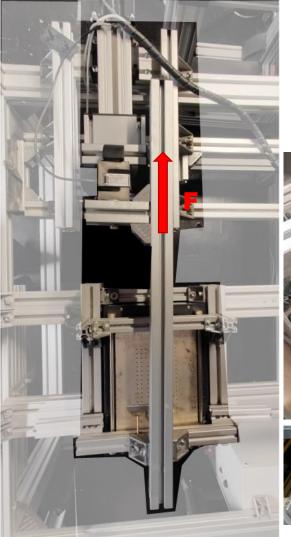
Agenda

1	Welcome – 10:30	
2	Policy Background – European Commission 10:40 – 11:00	
3	Scientific Background of the study 11:00 – 11:30	
4	Scoring System Method – Parameters 11:30 – 12:30	
5	Scoring System Method – Priority Materials / Components 14:00 – 14:30	
6	Scoring System Method – Scoring, Weight and Aggregation 14:30 – 15:00	
7	Next steps of the study 15:00 – 15:30	
8	General Questions and Answers 15:30 – 15:55	
9	AOB, closure 16:00	

Aluminium frame removal


70


Preliminary setup

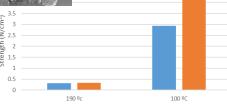

Peel-off test (@ different temperatures)

- Backsheet-encapsulant adhesion
- Encapsulant-glass adhesion

Relation with the TGA (thermogravimetric analysis) measurements of the different types of encapsulants

Delamination process (monofacial PV modules)

We'll take note of the steps and tools needed for dismantle the PV modules


- 1. Remove the backsheet (easy to streep, good for pyrolysis)
- 2. Remove encapsulant + cells + encapsulant

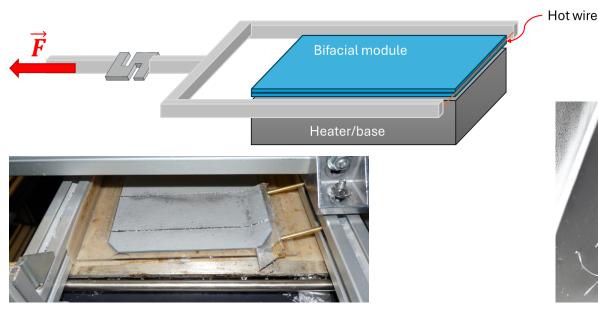
We obtain the separation of the main components

T variation

Viegand Maagøe

Backsheet Cell+encapsulant

Delamination process (bifacial PV modules) @ 190 °C


- 1. Hot-wire to separate both glasses
- 2. Remove encapsulant + cells + encapsulant (x2)

We obtain the separation of the main components

Viegand Maagøe

Measurable parameters:

- Force
- Temperature
- Time
- Wire has broken?

Viegand Maagøe

TESTING

Inverters: (dismantling test)

We will separate the priority parts

- Printed Circuit Board (PCB)
- Heat sinks (copper, aluminium)
- Casing (aluminium)
- Cables (copper)
- DC link Capacitors (palladium, tantalum).

We will take note of the number of steps, tools needed and the fasterners removed

SELECTION OF THE SAMPLES

PV modules (8 different types)

PV technology	PERC	TopC n	0	HJT	IBC
Modules	2	3		1	2
PV configuration	n Mono	Monofacial		acial	
Modules	4	4			

PV recycling	Conventional	Easy-to-disassemble
Modules	8	2?

Excluded:

٠

٠

٠

PV inverters (8 different types)

_	_								
		Inverter po	wer	0-1 kW	1-1	0 kW	10-30 kW		
		Inverters		1	5		2		
		Inverter ph	nase	Single-pha	ase	Thre	e-phase		
		Inverters		4		4			
						-			
ole			Micro	o-inverter	With	batter	ry charger		
		Inverters	1		3				
cluded:					•				
DC-to		packed with converters ers	transfo	0		ne scop product	be of Ecode s	sign m	easures

Next steps

 Written comments and inputs after the meeting are welcomed, deadline 1 November 2024, send comments to <u>info@pv-recyclability-index.eu</u>

- Slides and minutes will be uploaded to: <u>https://www.pv-recyclability-index.eu/documents/</u>
- **November 2024:** Survey on weighting factors
- **Spring 2025:** Third stakeholder consultation meeting
 - Presentation of testing results (calibration and validation of the method)
 - Presentation and consultation on the revised methodology
- June 2025: Publication of final report of the study

Study web site

https://www.pv-recyclability-index.eu/

Development of a recyclability index for photovoltaic products

e The Study Register Meetings Documents Contact

- Please register not only for the meeting but also for receiving news / updates
- You will find slides and brief notes of this meeting at the project website

<u>The European Climate, Infrastructure and Environment Executive</u> <u>Agency.(CINEA</u>) has commissioned a study for the development of recyclability indexes for photovoltaic products (PV modules and inverters).

This comprehensive study is conducted by <u>Viegand Maagøe</u>, in collaboration with <u>Universidad de Murcia</u> and <u>Centro Nacional de Energias Renovables (CENER</u>). This website serves as the primary information exchange platform between the study team, CINEA and the stakeholders. All the consultation documents and deliverables prepared in the context of this study will be made available through this website. Please <u>register here</u> for receiving updates and invitations to stakeholder meetings.

Please note that the information and views expressed in this study are those of the consultants and do not necessarily represent the official opinion of CINEA, see further <u>Disclaimer and Copyright</u> information for this website.

What's new

26/1/2024: Invitation to first stakeholder meeting to be held on 12 February 2024. <u>Register for the meeting here</u>.

01/2024: Launch of the study.

Agenda

1	Welcome – 10:30	
2	Policy Background – European Commission 10:40 – 11:00	
3	Scientific Background of the study 11:00 – 11:30	
4	Scoring System Method – Parameters 11:30 – 12:30	
5	Scoring System Method – Priority Materials / Components 14:00 – 14:30	
6	Scoring System Method – Scoring, Weight and Aggregation 14:30 – 15:00	
7	Next steps of the study 15:00 – 15:30	
8	General Questions and Answers 15:30 – 15:55	
9	AOB, closure 16:00	

Agenda

1	Welcome – 10:30	
2	Policy Background – European Commission 10:40 – 11:00	
3	Scientific Background of the study 11:00 – 11:30	
4	Scoring System Method – Parameters 11:30 – 12:30	
5	Scoring System Method – Priority Materials / Components 14:00 – 14:30	
6	Scoring System Method – Scoring, Weight and Aggregation 14:30 – 15:00	
7	Next steps of the study 15:00 – 15:30	
8	General Questions and Answers 15:30 – 15:55	
9	AOB, closure 16:00	

Viegand Maagøe

Thank you for attending this meeting!

info@pv-recyclability-index.eu

Felice Alfieri, Chief Adviser Email: <u>fal@viegandmaagoe.dk</u>

Nieves Espinosa, Senior Researcher Email: <u>nieves.espinosa@um.es</u>

Jaione Bengoechea, Senior Researcher Email: <u>jbapezteguia@cener.com</u>